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Abstract. This paper describes the formal specification of a future
banking system by abstract data types and process algebra. In contrast
to previous exercises (e.g., [1]), the system’s description is an actual in-
dustrial standard which is being used to develop the next generation
of automatic banking machines. The specification language Csp-Casl is
particularly well suited to this type of problem, since it combines both
control and data aspects and allows loose specification of data types for
later refinement. During the formalisation, several inconsistencies and
ambiguities were exhibited. The obtained specification serves as a start-
ing point for further validation.

1 Introduction

Electronic payment systems represent an important application area for both
the theory and practice of system specification. In theory, they provide a suit-
able benchmark to demonstrate the abilities of a certain specification method
(consider e.g. [1, 5, 7]). In practice, they are classified as safety critical systems
and thus must be developed with due diligence. In this paper we consider such
an application by studying in detail how to build a formal specification for the
electronic payment system ep2 [2], a new international standard developed by a
consortium of leading Swiss finance institutes.

ep2 is typical of a number of similar applications. The system consists of
seven autonomous entities centred around the ep2 Terminal : Cardholder (i.e.,
customer), Point of Service (i.e., cash register), Attendant, POS Management
System, Acquirer, Service Center, and Card, see Fig. 1. These entities commu-
nicate with the Terminal and, to a certain extent, with one another via XML-
messages in a fixed format. These messages contain information about authori-
sation, financial transactions, as well as initialisation and status data. The state
of each component heavily depends on the content of the exchanged data. Each
component is a reactive system defined by a number of use cases. Thus, there
are both reactive parts and data parts which need to be modelled, and these
parts are heavily intertwined.

The ep2 system also represents a typical industrial case study. The specifica-
tion consists of roughly 600 pages of text, which is a mixture of plain English and
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other semi-formal notation. Some parts are specified up to a bit encoding level,
while others are left open and referred to common understanding. It is, how-
ever, an actual international standard which is used to implement and validate
banking machines from different manufacturers.

In the formalisation, we use the specification language Csp-Casl [22]. This
language combines process algebraic specification of reactive behaviour and al-
gebraic specification of data types at various levels of detail. Csp-Casl uses the
process algebra Csp [10, 23] for the modelling of reactive behaviour, whereas
the properties of the communications are specified in Casl [3, 16]. Csp-Casl is
generic in the Csp semantics. Furthermore, Csp-Casl offers a notion of refine-
ment with clear relations to both data refinement in Casl and process refinement
in Csp.

Structuring our Csp-Casl specifications in nearly the same way as the orig-
inal ep2 documents allows us to exhibit several ambiguities, omissions, and con-
tradictions in the documents. Here, especially Csp-Casl’s loose specification of
data types plays an important role. Often, the top level ep2 documents provide
only an overview of the data involved, while the presentation of further details
for a specific type is delayed to separate low-level documents. Csp-Casl is able
to match such a document structure by a library of specifications, where the
informal design steps of the ep2 specification are mirrored in terms of a formal
refinement relation.

The paper is structured as follows. First, we give an overview of the ep2 sys-
tem, where we focus on the existing specification and the shortcomings thereof.
Then, we quickly review the specification language Csp-Casl. In section 3, we
describe our formalization, and in section 4 we report on our results with this
formalization. Finally, we summarize our results, discuss related approaches, and
conlude with hints on future work and perspectives.

2 The ep2 System

ep2 stands for ‘EFT/POS 2000’, short for ‘Electronic Fund Transfer/Point Of
Service 2000’, and is a joint project established by a number of (mainly Swiss)
financial institutes and companies in order to define EFT/POS infrastructure for
credit, debit, and electronic purse terminals in Switzerland (www.eftpos2000.ch).
ep2 builds on a number of other standards, most notably EMV 2000 (the Eu-
ropay/Mastercard/Visa Integrated Circuit Card standard, see www.emvco.com)
and various ISO standards. An overview of ep2 is shown in Fig 1.

2.1 ep2 Document Structure

The ep2 specification consists of twelve documents, each of which either consid-
ers some particular component of the system in detail, or considers some aspect
common to many or all components. The Terminal, Acquirer, POS Manage-
ment System, Point of Service (POS), and Service Center components all have
specification documents setting out ‘general’, ‘functional’, and ‘supplementary’
requirements, where the functional requirements carry the most detail, and con-
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sist mainly of use cases discussing how that particular component behaves in
various situations. As well as the specifications of particular components, there
is a Security Specification, an Interface Specification, and a Data Dictionary.

One obvious characteristic of such a document structure is that, when con-
sidering some aspect of the system, the information required to understand that
aspect is contained in several different documents, each of which has its own
things to say about the situation in question. For example, in order to gather all
information about the SI-Init interface between Terminal and Acquirer, see Fig.
1, one has to examine the Terminal Specification, the Acquirer Specification, the
Interface Specification, and the Data Dictionary. As we will see, this approach
easily leads to inconsistencies and ambiguities.

2.2 ep2 Specification Style

The original ep2 documents are comprised of a number of different specification
notations: plain English; UML-like graphics (use cases, activity diagrams, mes-
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Fig. 1. Overview of the ep2 System, following closely [2]
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sage sequence charts, class models, etc.); pictures; tables; lists; file descriptions;
encoding rules.

Subsequently, we will focus on the SI-Init connection between Terminal and
Acquirer (see Fig. 1).

The Acquirer is defined in a table of roles as a “Card processor, which runs
a system for processing of electronic payment transactions. The Acquirer is in
contact with the merchant.” Later, in another table describing the main system
features, the functionality of the Acquirer is classified into four subsystems:

– Acquirer Initialisation System: Supports remote SW-parameter initialisa-
tion. Exchanges Terminal configuration data with the Service Center.

– Authorisation System: Processes Terminal on-line authorisation requests, as
well as transaction reversal requests. Forwards issuer scripts to the Terminal.

– Submission System: Processes transactions.
– Reconciliation System: Provides reconciliation1 data to the merchant.

In the Acquirer general requirements document, a fifth subsystem is identified:

– COI 2 server: Used for data exchange with the Service Center.

Another table lists the communication interfaces; in particular, “The SI-Init
interface is used by the Acquirer to download application specific initialisation
data which include Acquirer data necessary for Acquirer authentication and data
submission.”

Later in the System specification, this communication is depicted in a use
case, seen in Fig 2. It shows that the “Get Initialization Function” can be called
by the service man either directly at the Terminal, or via an “Initiate Termi-
nal Setup” at the Point of Service. Additionally, the function can be called in
cyclic intervals by a timer process, or by an authentication server process at the
Acquirer’s site.

For both the Terminal and the Acquirer, activity diagrams are given describ-
ing the flow of control on the receipt of messages. For conciseness, in Fig. 3 we
only show the diagram for the Acquirer.

For each state in this activity diagram, a verbal description is given of which
message parameters are admissible in this state, and what the appropriate answer
messages are composed of. For example, in state “Send �Config Data Request�
Message”:

The Acquirer shall send the message �Config Data Request� to the
Terminal. The Acquirer shall set <Config Data Object> to the configu-
ration data object which the Acquirer is interested in. For CPTD, TACD
and CAD the Acquirer shall specify with an AID resp. a RID which table

1 Reconciliation: to compare the business undertaken at the terminal with that
recorded by the acquirer and credited to the merchant’s bank account.

2 COI stands for configuration and initialisation (of the terminal) within the ep2
specification.
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Fig. 3. Activity diagram for Acquirer getting initialisation data, as shown in [2]

exactly it wants to receive. If the Acquirer sets <Config Data Object> to
LAID, he receives a list of all AID’s supported by him from the Terminal.
. . .

The appropriate parameter values are informally described in another table, the
beginning of which is given in Fig. 4.

On the concrete data encoding level, the SI-Init connection is constrained by
the following requirements in the system description:
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<Config
Data Ob-
ject> value

Object Name Additional Data Ele-
ment

Returned by Terminal

ACD Acquirer Config Data - One ACD object of the
requesting acquirer

AISD Acquirer Init Srv Data - One AISD object of the
requesting acquirer

CPTD Card Profile Table Data <Application Identifier
(AID)>

One CPTD object of the
requested AID.

CAD Certification Auth Data <Registered Applica-
tion Provider Identifier
(RID)>

One CAD object of the
requested RID.

TACD Terminal Application
Config Data

<Application Identifier
(AID)>

One TACD object of the
requested AID.

... ... ... ...

Fig. 4. Excerpt of message parameters and expected answers for initialisation [2]

– ep2 interface.
– Uses XML based on TCP/IP.
– Message based.
– Uses strong security mechanisms.

2.3 Shortcomings

The above specification style is typical for a number of today’s industrial de-
velopments. As described above, it uses a number of up-to-date specification
notations, and has additional verbal explanations and cross references through-
out the books. However, for a team of developers which has to rely on this
specification as a sole basis for an implementation it may be hard to produce a
correct result. (A typical scenario would be a company which is not part of the
consortium and wishes to produce a compliant device). Some of the reasons for
this are:

First, there are several ambiguities within the documents which could lead
to interoperability problems between different implementations. Ambiguities are
inherent in all natural-language documents, since human language is subject to
individual interpretation. As an example, consider the expected answer “One
ACD object of the requesting Acquirer” in Fig. 4. This could mean

– One object, and it must be the one of the requesting Acquirer.
– One of all the objects belonging to the requesting Acquirer.

(In mathematical logic the difference is formalized by Russell’s jota- and Hilbert’s
eta-operators.) Different opinions about the meaning of this requirement could
lead to incompatible implementations.

Worse, there are some inconsistencies within the documents themselves. In
fact, the data flow for the “Acquirer Init Srv Data” message is specified in the
data dictionary as from the Acquirer via Service Center into the Terminal. In
the above activity diagram, the Acquirer is allowed to read this data object from
the Terminal. It contains the Acquirer’s identifier, public key and communica-
tion address. The only plausible reason for the Acquirer to receive this data is
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to check its consistency. However, the Acquirer has no way to initiate a correc-
tion of these data, even if an inconsistency is detected. Since the specification
is rather large and was written by several authors, such situations cannot be
avoided.

Third, the ep2 documents are not suitable for tool supported software de-
velopment. In particular, since the various requirements are intermingled, they
cannot be easily input into an automated requirement management system such
as Telelogic’s DOORS or IBM/Rational’s Requisite Pro. Thus, it is hard to as-
sure that all required functionality is present in an implementation. Moreover,
it is not possible to automatically check consistency of the requirements with
one another, or to prove the conformance of a particular implementation with
respect to the specification.

Last but not least, the given documents interleave different levels of abstrac-
tion. For example, the above mentioned architecture of the Acquirer is aug-
mented by “logical component requirements” such as permanent accessibility, as
well as use cases and a data model. Thus, it is not easy to use the specification in
a structured development process. In fact, since implementation details are to be
found throughout the specification, a programmer might be forced to reinvent
parts which have already been developed by others. Moreover, implementation
details are often subject to change; thus, the whole ep2 specification must be
updated whenever some detail is modified. This can result in serious version
compatibility problems.

3 CSP-CASL

Csp-Casl [22] is a comprehensive language which combines the specification of
data types in Casl [3, 16] with processes written in Csp [10, 23]. The general
idea of this language combination is to describe reactive systems in the form of
processes based on Csp operators, but where the communications between these
processes are the values of data types, which are loosely specified in Casl. All
standard Casl features are available for the specification of these data types,
namely many-sorted FOL with sort-generation constraints, partiality, and sub-
sorting3. Furthermore, the various Casl structuring constructs can be used to
describe data types within Csp-Casl. This includes the structured free con-
struct, which adds the possibility to specify data types with initial semantics.
For the description of processes, the typical Csp operators are included in Csp-
Casl: there are for instance internal choice and external choice; the various par-
allel operators like the interleaving operator, the alphabetized parallel operator,
and the general parallel operator; also communication over channels is included.
Similarly to Casl, Csp-Casl specifications can be organized in libraries. In-
deed, it is possible to mix Casl specifications and Csp-Casl specifications in

3 For technical reasons, in Csp-Casl sub-sorting is restricted to subsort relations with
so-called top elements. As it turns out e.g. in our current case study of specifying
ep2, this restriction is of no practical relevance.
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one library, separating the development of data types in Casl from their use
within Csp-Casl. This allows the specification of a complex system like ep2 in
a modular way.

Syntactically, a Csp-Casl specification with name N consists of a data part
Sp, which is a structured Casl specification, an (optional) channel part Ch
to declare channels, which are typed according to the data specification, and
a process part P written in Csp, within which Casl terms are used as com-
munications, Casl sorts denote sets of communications, relational renaming is
described by a binary Casl predicate, and the Csp conditional construct uses
Casl formulae as conditions:

ccspec N = data Sp channel Ch process P end

See Fig. 6 for a concrete instance of such a scheme. In the process part, the
let ... in ... construct offers the possibility for recursive process definitions.
Processes can also be parameterized with variables typed by Casl sorts. In
general, this combination of recursion and parameterization leads to an infinite
system of process equations. The theory of Csp offers syntactic characterizations
for the existence and uniqueness of solutions for such systems of equations.

As a consequence of the loose semantics of Casl, semantically a Csp-Casl
specification is a family of process denotations for a Csp process, where each
model of the data part Sp gives rise to one process denotation. The definition
of the language Csp-Casl is generic in the choice of a specific Csp semantics.
For example, all denotational Csp models mentioned in [23] are possible param-
eters. For the purpose of specifying ep2 in Csp-Casl, we mainly use the Csp
denotational stable-failures model. This model is able to distinguish between the
different choice operators, and allows for infinite non-determinism as well as for
infinite communication alphabets: features which naturally appear in abstract
system descriptions involving loosely specified data types.

Framework Csp-Casl
Ccs-Casl

Casl-Chart

����� �����
Meta-framework Casl-Ltl CoCasl

Fig. 5. Relationship between Csp-Casl and other reactive Casl extensions

Related Specification Languages. Within the context of Casl, various reactive
extensions were proposed – see Figure 5 for a small selection and classifica-
tion. Our definition of Csp-Casl, like Ccs-Casl [24, 25] and Casl-Chart [20],
combines Casl with a particular mechanism to describe reactive systems. This
results in a Framework suitable to model real-world systems. Casl-Ltl [19] and
CoCasl [21, 15], on the other side, can be seen as a Meta-framework aiming
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1 ccspec ep2 =
2 data sorts D_CAI_Card; D_SI_Config; D_SI_Init; D_FE_FrontEnd;
3 D_MI_Subm; D_BE_BackEnd; D_EI_ECR; D_COI_Config; D_MI_Rec;
4 free type D_MI_Subm_or_Rec ::=
5 subm(select_subm:? D_MI_Subm) | rec (select_red:? D_MI_Rec);
6 channels C_CAI_Card: D_CAI_Card; C_SI_Config: D_SI_Config;
7 C_SI_Init: D_SI_init; C_FE_FrontEnd;
8 C_MI_Subm: D_MI_Subm; C_BE_BackEnd: D_BE_BackEnd;
9 C_EI_ECR: D_EI_ECR; C_COI_Config: D_COI_Config;
10 C_MI_Subm_or_Rec: D_MI_Subm_or_Rec;
11 process
12 let Card = Run(C_CAI_Card)
13 ServiceCenter = Run(C_SI_Config) ||| Run(C_COI_Config)
14 Acquirer = Run(C_COI_Config) ||| Run(C_SI_Init)
15 ||| Run(C_FE_FrontEnd) ||| Run(C_MI_Subm)
16 ||| Run(C_MI_Subm_or_Rec)
17 PosMgmtSystem = Run(C_BE_BackEnd) ||| Run(C_MI_Subm_or_Rec)
18 PointOfService = Run(C_EI_ECR)
19 Terminal = Run(C_CAI_Card) ||| Run(C_SI_Config)
20 ||| Run(C_SI_Init) ||| Run(C_FE_FrontEnd)
21 ||| Run(C_MI_Subm) ||| Run(C_BE_BackEnd)
22 ||| Run(C_EI_ECR)
23 in Terminal
24 [| C_CAI_Card, C_SI_Config, C_SI_Init, C_FE_FrontEnd,
25 C_MI_Subm, C_BE_BackEnd, C_EI_ECR |]
26 (Card
27 ||| ((ServiceCenter
28 [ C_COI_Config || C_COI_Config, C_MI_Subm_or_Rec ]
29 Acquirer)
30 [ C_COI_Config, C_MI_Subm_or_Rec || C_MI_Subm_or_Rec ]
31 PosMgmtSystem)
32 ||| PointOfService)
33 end

Fig. 6. Modelling ep2: The architectural level

more for the formalization of (the semantics of) different frameworks for reac-
tive systems.

Outside the Casl context, e.g. µCRL [9], LOTOS [11], and E-LOTOS [13]
provide other solutions for the integrated specification of data and processes
within one language. Conceptually, µCRL and Csp-Casl are quite similar in
their respective design. In the data part however, Csp-Casl is far more rich:
among other features, it offers partiality and subsorting which are frequently
used in the modelling of ep2. LOTOS [11] and its recently defined successor E-
LOTOS [13] use for data description initial semantics and a functional program-
ming language, respectively. Thus, these languages do not allow for the modelling
of the abstract system layers of ep2 as presented here within Csp-Casl.

4 Formalizing ep2 in CSP-CASL

The present formalization of the ep2 system is the first major industrial case
study in Csp-Casl. It was done with a number of different aims. Our main
objective was to show the feasibility of the approach. This includes many aspects:

Scalability. We wanted to show that it is possible to completely specify a non-
trivial system in this formalism. Previous approaches restricted themselves
to academic toy examples or small fragments of actual systems.
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Expressiveness. Another aim was to prove that Csp-Casl encompasses enough
expressive power to deal with the given application. In particular, ep2 con-
tains most aspects which can be found in typical present-day computational
systems.

Usability. An important point was to demonstrate that Csp-Casl specifica-
tions are easy to write and easy to understand. Many specification formalisms
are only targeted at experts and require intensive training and experience.

Adequacy. In order to investigate to what extent the informal and natural
language descriptions can be formalized, we wanted to follow the original
document structure as closely as possible.

A second objective relates to the actual ep2 system itself. We wanted to show
how formal methods can help to improve the design.

Clarity. By structuring the formal specification appropriately, we wanted to
untangle the different levels of abstraction in the documents. This could
guide future implementors in building a modular implementation.

Precision. We wanted to exhibit ambiguities and inconsistencies within the
informal descriptions, which facilitate implementations by third-party im-
plementors.

Validation and Verification. In a second step, we want to use the resulting
formal specification to validate actual implementations, prove their confor-
mance with the standard and to generate test cases from the formal specifi-
cation.

In this section, we give an overview on the structuring of our formalization.
According to the general paradigm of Csp-Casl, there are two main aspects:
the reactive behaviour of ep2 components and the data structures which are
involved.

4.1 Reactive Behaviour

It is natural to model ep2 as a reactive system. In Csp-Casl, we describe its dif-
ferent components by Csp processes which interchange data over communication
channels typed by Casl sorts.

On the architectural level in the center of the ep2 system there is a Terminal
process – c.f. line 23 of Fig. 6. This Terminal communicates over channels
with its environment, expressed here in terms of the Csp general parallel op-
erator [| C CAI Card, ..., C EI ECR |] linking the Terminal with its envi-
ronment. The environment consists of the processes Card, ServiceCenter, . . . ,
PointOfService.

Note how this model directly corresponds to Fig. 1, which is the first and most
abstract description of ep2 given in the ep2 System Specification. We express
this correspondence by the choice of names: ep2 components become identi-
cally named processes, an ep2 interface is characterized by the possible data to
be exchanged over it — prefix D for the corresponding sort providing the type of
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this data — and by the connection it represents — prefix C for the corresponding
channel.

We do not model the Cardholder and the Attendant as processes as the
ep2 specification covers their role only on the level of user interfaces. Most of
the processes in the environment run independently of each other, expressed
by the Csp interleaving operator ||| (lines 27 and 32). Some of them also
interchange information which each other: the ServiceCenter, the Acquirer,
and the PosMgmtSystem. Here, we use the Csp alphabetized parallel opera-
tor, e.g. [ C COI-Config || C COI-Config, C MI Subm or Rec ] (line 28),
which synchronizes in the intersection of the two alphabets, i.e. in this ex-
ample in C COI-Config. On the architectural level, we leave the behaviour
of the different processes completely unspecified, i.e. they are modelled by
the Csp process RUN(A), which is the deadlock-free, non-terminating process
able to engage in any event in a set of communications A. For any process
of the ep2 system we choose this set A to consist of all messages, which it
might send or receive over the channels which connect it to other processes.
For instance, for the Terminal the set A consists of all messages which can
be sent or received over any of the channels named in the general parallel
[|C CAI Card, C SI Config, . . . , C EI ECR|] which connects the Terminal
with its environment. This is expressed here as the interleaving of several
Run processes (lines 19 – 22).

On the abstract component description level, we refine the processes
RUN(A) of the above architectural model without changing the overall com-
munication structure. Our example stems from the Terminal specifi-
cation, showing the Terminal’s reactions to the Acquirer’s requests on
initialization data. In a first step, we specify only that the Terminal
produces answers of the right kind, e.g. on a D SI ConfigDataRequest a
D SI Init ConfigDataResponse is sent:

TConfigManagement = C_SI_Init ? x ->
if x in D_SI_ConfigDataRequest
then !y:C_SI_Init.D_SI_Init_ConfigDataResponse -> TConfigManagement

else if x in D_SI_ConfigDataNotification
then !y:C_SI_Init.D_SI_Init_ConfigDataAcknowledge -> TConfigManagement

else ...

Here, !y:A -> P denotes the process which first communicates a value y out of
the set A and then behaves like P; i.e. the ! operator is similar to the Csp prefix
choice, but for the former the choice is internal, while for the latter the choice
is external.

In the next step, the concrete component description level, we model which
specific values the Terminal is going to send. It is at this level, that the process
becomes stateful, i.e. it depends on a parameter p:Pair[TState][Trigger].
Here, TState represents the Terminal’s memory, while Trigger says what kind
of signal initiated the configuration management.
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TConfigManagement (p:Pair[TState][Trigger]) = C_SI_Init ? x ->
if x in D_SI_ConfigDataRequest
then C_SI_Init ! configDataResponse(x,state(p))
-> TConfigManagement(p)

else if x in D_SI_ConfigDataNotification
then C_SI_or_FE ! configDataAcknowledge
-> TConfigManagement (pair(activateData(x,state(p)),trigger(p)))

else ...

This example illustrates the interaction between the specification of reac-
tive behaviour and the modelling of data types when studying the control flow
within a component: A message x is received from the Acquirer over the channel
C SI Init. Depending on the type of x, different answers are sent back to the
Acquirer, e.g. information configDataResponse(x,state(p)) on the current
configuration of the Terminal or a message configDataAcknowledge. Then the
configuration management is continued, either without a state change or with a
state change to pair(activateData(x,state(p)),trigger(p)).

It is at the component description levels that more information on data in
terms of Casl elements come into play: for instance, there is the test if the
value x belongs to a certain subsort D SI ConfigDataRequest. The response
is computed by a function configDataResponse that takes the message x and
the current state state(p) of the Terminal as parameters, or the new state is
computed by a function activateData(x,state(p)).

4.2 Data on Different Levels of Abstraction

In direct correspondence to the development of ep2’s reactive behaviour over
different levels of abstraction, the data types involved are made more and more
concrete.

On the architectural level, see Fig. 6, it is sufficient to speak merely about the
existence of sets of values which are communicated over channels; e.g. the data
sort D CAI Card is interchanged on a channel C CAI Card: D CAI Card be-
tween the Card and the Terminal. Or a channel shall be shared by different mes-
sage types, as channel C MI Subm or Rec: D MI Subm or Rec. Here, the Casl
free type construct ensures that the different kinds of data are kept separate.

If the component specification level is abstract, it is usually sufficient to in-
troduce suitable subsorts. Consider for instance the communication between Ac-
quirer and Terminal, see Fig. 3. To specify how the Acquirer interchanges ini-
tialisation data, it is enough to know the type of the data, i.e. whether it is a
<<SessionStart>> Message or a <<ConfigDataRequest>> Message. In Casl,
this can be specified by a free type construct

free type D_SI_Init ::= sort D_SI_Init_SessionStart
| sort D_SI_Init_ConfigDataRequest
| sort D_SI_Init_ConfigDataResponse
| ...

where each alternative corresponds to a message type occurring in the activity
diagram.
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But if on the component description level the concrete value of a message
triggers a specific behaviour, it is necessary to specify the data types up to
representation. Fig. 4 shows the different messages which the Acquirer might
send to the Terminal in order to make requests on its configuration. These
messages can be modelled by a Casl free type, and we can finally make concrete
which data are involved in a D SI Init ConfigDataRequest:

free type ConfDataObjRequest ::=
ACD %% Acquirer Config Data

| AISD %% Acquirer Init Srv Data
| CPTD (ApplicationID) %% Card Profile Table Data
| CAD (RegisteredApplicationProviderID) %% Certification Auth Data
| TACD (ApplicationID) %% Terminal Application Config Data
...
free type D_SI_Init_ConfigDataRequest ::=
configDataRequest(ac:AcquirerID;term:TerminalID;conf:ConfDataObjRequest)

Up to now data modelling involved only sort declaration, sub-sorting and
several forms of disjoint union via the free types construct. But on the compo-
nent description level, also operations on data and axioms describing them come
into play. We give a simple example, again from the context of the Terminal’s
initialisation. The ep2 documentation states here: If the configuration download
is started by the service man or the ‘Use Case: Initiate Terminal Setup’, the
Terminal sets the <Config Download Mode> to ‘1’ indicating ‘Forced download’
otherwise to ‘0’ for ‘Download check’. We model this case distinction by a func-
tion sessionStart which is specified by the following axioms:

axioms sessionStart(serviceMan) = forcedDownload;
sessionStart(initialTerminalSetup) = forcedDownload;
sessionStart(others) = downloadCheck

Note that like in the modelling of the reactive behaviour, the different levels
of data abstractions are clearly connected by refinement relations.

5 Results

Our overall experience of specifying ep2 in Csp-Casl is that while it’s easy to
formalize high level descriptions (e.g. the system architecture) from semi-formal
descriptions (e.g. UML-like diagrams), writing specifications at the concrete level
is more involved. At the more concrete levels, one has to deal with more unre-
solved and unclear descriptions (mostly presented as text), and decide which
information must be formalized and what details should be ignored as they be-
long to other components or to another abstraction level. Having overcome these
obstacles, the Csp-Casl formalization is again fairly straightforward. In this
sense, our Csp-Casl specifications clearly mirror the ep2 document structure
and specify at the different abstraction levels present therein.

As for Csp-Casl’s expressivity, both the data types and the reactive be-
haviour present in ep2 can be adequately formalized. In modelling the data
types, Casl’s subsorting feature proved particularly helpful. In modeling the
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reactive behaviour, Csp’s distinction between internal and external choice was
similarly important.

5.1 Resolution of Shortcomings

Formalising ep2 in Csp-Casl leads to the partial or complete resolution of the
problems outlined in section 2.3.

Fig. 7. Sequence diagram for requesting configuration data, as shown in [2]

One reason for this is that we are describing the system within one frame-
work. In the data modelling for instance the possible values of the message type
<<Config Data Request>> are described independently in various ep2 docu-
ments, where such different formats as text and tables are involved. Here, one
of these texts mentions values LAID and LRID – see the excerpt in Section 2.2 –
which do not appear anywhere else. Csp-Casl enables us to specify the corre-
sponding data type only once and – via Csp-Casl’s library mechanism – use it
then in different contexts. If only data types are concerned, the Casl tool set
CATS offers the possibility of static checks for inconsistencies. Looking on the
reactive side, a comparison of the diagrams Fig. 3 and Fig. 7 shows that they
specify the order of Requests and Responses differently: Fig. 3 requires that after
one Request exactly one Response has to follow. In spite of this, Fig. 7 suggests
that several Requests and several Responses can be ‘bundled’, and that a session
might include different numbers of Requests and Responses. This inconsistency
is clearly due to the change between the two formalisms involved (and maybe
a weakness of the latter). In Csp-Casl, we can easily specify both variants; in
our ep2 formalization we decided to follow Fig. 3.

Another aspect is that the specification language Csp-Casl itself guides us
during the formalization process. Csp for instance is famous for its clarity con-
cerning different forms of non-determinism. Thus, in modelling a diagram such
as Fig. 3, it is natural to ask if the decision between the different branches is
an internal or an external one. In this example, it is the Acquirer who takes
the decision. Studying the documentation of the Acquirer further it turns out
that for the purpose of the ep2 system it is unnecessary to model the database
which is checked for ‘Additional Configuration Data’ in order to trigger the de-
cision. This leads finally to a simple stateless process as a model for this part
of the Acquirer. Interestingly enough, in the description of different parts of
ep2 the ‘decision points’ depicted as diamond with outgoing arcs in this kind of
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diagram need different formalizations in Csp-Casl: as internal non-determinism,
as external non-determinism, and sometimes it is even the case that there is no
decision to make. Concerning data, the loose semantics of Casl allows us to
postpone design decisions until they are actually required. As seen in Section 4.2
on the different levels of data abstraction, sub-sorting is a powerful mechanism
in decomposing complex data type into subtypes of manageable size.

The formalization helps also to design a certain system aspect only once,
with the consequence of avoiding possible source of inconsistencies. For data
types, this has been illustrated above with the message type <<Config Data
Request>>. Concerning reactive behaviour, writing a Csp-Casl specification
often helped to avoid over-specification. For instance, in the ep2 documenta-
tion the Terminal’s responses to a request from the Acquirer are described
at least twice: in the Terminal documents and in the Acquirer documents.
In the world of Csp processes this is unnecessary: after sending a request to
the Terminal, the Acquirer process wants only to receive a message on the
channel which is connected with the Terminal. Only in the formalization of
the Terminal is it necessary to state which specific response has to be sent,
and as we have seen in Section 4.1, this is only necessary at a quite concrete
level of abstraction.

5.2 Access to Formal Proofs

One of the benefits of specifying ep2 formally is that it makes it possible to
establish properties by formal proofs on the Csp-Casl specifications describ-
ing the system. First experiments in this direction include proofs of refinement
relations, deadlock analysis and consistency checks of the data types.

For instance, with the newly developed CSP-Prover [12] we were able to prove
that

– our Csp-Casl specification corresponding to the activity diagrams ‘Get Ini-
tialisation Data’ — see Fig. 3 for the Acquirer’s side of the protocol — is
deadlock-free, and

– that — concerning the reactive part of the Csp-Casl specification of the
activity diagrams ‘Get Initialisation Data’ — the specification on the con-
crete component description level refines4 the abstract component descrip-
tion level.

Concerning data types, we used the Casl consistency checker [14] in order
to prove the consistency of data types on the component description level. Here,
we concentrated on the simple case of data types corresponding to ep2 messages
as e.g. the ConfigDataRequest. At first glance this seems to be trivial, as on
the Casl side these data types involve just a free datatype construct. But as
the components of such a free type refer to other specifications, the question of
consistency becomes a more involved problem as checking for non-interference
between several separate specifications is required.
4 Here, we use Csp’s notion of stable-failure refinement.
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6 Discussion and Future Work

We have shown how to specify a non-trivial system in the formal specification lan-
guage Csp-Casl. Since ep2 is a prototypical example, the obtained results also
hold for other systems such as web services, communicating financial agents, etc.
Reconsidering our original aims, the specification language turned out to be well-
suited to “translate” informal and natural language constructs, and rich enough
to cover most important aspects of this particular system. Furthermore, it turned
out that it is mostly possible, but not always advisable to follow the original doc-
ument structure in the formalization. Considering scalability, we found that it is
neither much harder nor much simpler to write a formal than an informal spec-
ification. In fact, we think that both styles have their own benefits; ideally the
formal text should accompany informal descriptions in a ‘literate specification’.

Related Work. The specification and implementation of banking software be-
longs to the most widely used exercises in computer science education. For ex-
ample, in [4] the implementation of automated teller machine (ATM) software
from an object oriented analysis and design is described. This graduate-level tu-
torial comprises a nice example of current best practice in software engineering,
from the informal requirements specification up to an executable applet which
can be used by students for testing purposes.

Similarly, many efforts have been invested in the verification of basic prin-
ciples of the communication protocols which are employed in banking software.
For example, in [8], some aspects of the Millicent micropayment protocol are
modelled in an abstract protocol notation which is close to Csp, and security
aspects are verified from this. As another example, in [18] authentication issues
in the Secure Electronic Transaction (SET) protocol of Visa/Mastercard are
verified by model checking a multi-agent logic of belief and time.

Not much work, however, has been mentioned in the formal specification and
verification of real banking software and standards such as EMV or ep2. As an
early example, in [26], the UNITY-method is used to refine a high-level speci-
fication of an electronic funds transfer system into one that could in principle
be turned into an executable program. A more recent example of a formal spec-
ification of an actual banking standard is reported in [27], where the Mondex
electronic purse system was proven correct with respect to its Csp and Z speci-
fication and was certified according to UK ITSEC Level 6. In [17], the Internet
Open Trading Protocol (IOTP) is specified with colored Petri nets from an Re-
quest for Comments (RFC) by the Internet Engineering Task Force (IETF). In
[6], it is argued that an interdisciplinary approach is necessary in this field, where
experts from business administration, computer science and electrical engineer-
ing specify different views of a system. As example, a real internet based CD
retail store system is specified in an integrated system model.

Future Work. Our next steps on formalizing ep2 will be to complete the mod-
elling as far as possible. In particular, up to now we have formalized only a
significant part of the whole specification, where the main omissions are the low-
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level XML communication between actors and the security layer. In fact, the
security part of ep2 heavily relies on common sense and external documents; in
order to be able to prove security properties we will have to add certain assump-
tions about the underlying cryptographic methods. Other proofs on the formal
model which we already started include refinement relations and deadlock anal-
ysis with CSP-Prover [12], as well as consistency of the data types [14]. Livelock
analysis is to follow.

Finally, we want to use the model to automatically generate test cases for
the different components of the ep2 system. It is an interesting research topic to
define criteria which measure both data and control coverage of such test suites.
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